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Introduction

Introduction

The total variation of a real-valued function f defined on an interval [a, b]
is a measure of the 1− D arc length from a to b. Mathematically we can
define the total variation of f as

V b
a (f ) = sup

p

n
∑

i=1

|f (xi)− f (xi−1| (1)

where the supremum runs over the set of all partitions
P = {a = x0, x1, ..., xn = b}. (1) is useful if we are measuring the arc
length of a one-dimensional function f . to extend the notion to more
general curves, we may begin by observing that equation (1) can be
multiplied and divided by ∆x to obtain

V b
a (f ) = sup

p

n
∑

i=1

∣

∣

∣

∣

f (xi )− f (xi−1

∆x

∣

∣

∣

∣

∆x (2)

Equation (2) can be transformed into the continuous case by taking limits
as ∆x → 0 and n → ∞.
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method I

This method may be called the method of first principles.
A function f defined on an interval [a, b] is said to be of bounded variation
if there is a constant C > 0 such that

n
∑

k=1

|f (xk)− f (xk−1)| ≤ C

for every partition
a = x0 < x1 < ... < xn = b

of [a, b] by points of subdivision x0, x1, ..., xn. If f is of bounded variation,
then by the total variation of f is meant the quantity

V b
a (f ) = sup

n
∑

k=1

|f (xk)− f (xk−1)|

where the least upper bound is taken over all partitions of the interval
[a, b]. The above definitions work quite well for Riemann integrable
functions.
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method II

This method uses measure theory to describe the total variation
functional. It is useful only when describing the total variation
qualitatively. Let λ be a charge on X and let P ,N be a Hahn
decomposition for λ. The positive and negative variations of λ are the
finite measuresλ+, λ− defined for E in X by

λ+(E ) = λ(E ∩ P)

λ−(E ) = −λ(E ∩ N)

The total variation of λ is the measure |λ| defined for E in X by

|λ| = λ+(E ) + λ−(E )

If f is Lebesgue-integrable and f belongs to L(X ,X, µ) with respect to a
measure µ on X , and if λ is defined for E in X by

λ(E ) =

∫

E

fdµ,

then λ is a charge and
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method II

If f is Lebesgue-integrable and f belongs to L(X ,X, µ) with respect to a
measure µ on X , and if λ is defined for E in X by

λ(E ) =

∫

E

fdµ,

then λ is a charge and

λ+(E ) =

∫

E

f +dµ

λ−(E ) =

∫

E

f −dµ

so that

|λ|(E ) =

∫

E

|f |dµ =

∫

E

f +dµ+

∫

E

f −dµ (4)

Here, f is any Lebesgue-integrable function. The sum of the positive and
negative variations of the function f gives its total variation.
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method III

A function µ ∈ L1(Ω) whose partial derivatives in the sense of distributions
are measures with finite total variation in Ω is called a function of bounded
variation. This class of functions is usually denoted by BV (Ω). Thus,
u ∈ BV (Ω) if and only if there are signed measures µ1, µ2, ..., µn defined
in Ω such that for i = 1, 2, ..., n,

|Du|(Ω) < ∞

and
∫

uDiϕdx = −

∫

ϕdµi (5)

for all ϕ ∈ C∞
0 (Ω). The gradient of µ will therefore be a vector valued

measure with finite total variation:

‖Du‖ =

sup{

∫

Ω
udivvdx : v = (v1, ..., vn) ∈ C∞

0 (Ω;Rn),

|v(x)| ≤ 1∀x ∈ Ω} < ∞ (6)
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method III

The divergence of a vector field is denoted by divv and is defined by

divv =
n
∑

i=1

Divi =
n
∑

i=1

∂vi

∂xi

If u ∈ BV (Ω), the total variation ‖Du‖ may be regarded as a measure, for
if f is a non-negative real-valued continuous function with compact
support in Ω, we may define

‖Du‖(f ) =

sup{

∫

Ω
udivvdx : v = (v1, ..., vn) ∈ C∞

0 (Ω;Rn),

|v(x)| ≤ f (x)∀x ∈ Ω} (8)

||Du|| is additive, continuous under monotone convergence and a
non-negative Radon measure on Ω.
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method III

The space of absolutely continuous u with u′ ∈ L1(R1) is contained in
BV (R1). In the same manner in Rn, a Sobolev function is also BV . That
is, W 1,1(Ω) ⊂ BV (Ω). If u ∈ W 1,1(Ω) then,

∫

Ω
udivvdx = −

∫

Ω

n
∑

i=1

Diuvdx (9)

and the gradient of u has finite total variation with

||Du||(Ω) =

∫

Ω
|Du|dx . (10)
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Derivations of The Total Variation Functional

Derivations of The Total Variation Functional: Method III

This measures both the positive and negative variations implicitly rather
than explicitly. If u ∈ C 1(Ω), then

∫

Ω
|Du|dx =

∫

Ω
|∇u(x)|dx (11)

Let Ω ∈ R2 be an image surface. Then we have

∫

Ω
|∇u(x)|dx =

∫ ∫

√

(

∂u

∂x

)2

+

(

∂u

∂y

)2

dxdy (12)

which is the total variation of an image u with two independent variables
x , y .
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Derivations of The Total Variation Functional

Ndajah and Kikuchi Derivation: Method IV

We derive the total variation of an image using the vector gradients.
Images are two dimensional spatial functions. In general, to find the total
variation of an n-dimensional mathematical object, we consider the
directional derivative of a scalar function f (~x) = f (x1, x2, ..., xn) along a
unit vector ~u = (u1, ..., un). The directional derivative is defined to be the
limit

∇~uf (~x) = lim
h→0+

f (~x + h~u)− f (~x)

h
(13)

This means that the directional derivatives exist along any unit vector ~u,
and one has

∇~uf (~x) = ∇f (~x) · ~u (14)

Peter Ndajah (University of the Commonwealth Caribbean, Kingston, Jamaica)Total Variation Theory and Its Applications September 27, 2018 11 / 47



Derivations of The Total Variation Functional

Ndajah and Kikuchi Derivation: Method IV

For an image we represent the directional derivatives by i, j so that
{

∇x f (~x) = ∇f (~x) · i = ∂f
∂x

∇y f (~x) = ∇f (~x) · j = ∂f
∂y

(15)

The components ∇x f (~x) and ∇y f (~x) are orthogonal so that

∇f (~x) = i
∂f

∂x
+ j

∂f

∂y
(16)

and the inner product is

〈∇f (~x),∇f (~x)〉 = ‖∇f ‖2 =

∫ ∫

√

(

∂f

∂x

)2

+

(

∂f

∂y

)2

dxdy (17)

Therefore, total variation in two dimensions can be written as
∫ ∫

|∇f | dxdy (18)
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Total Variation Diminishing

Total Variation Diminishing

In numerical methods, total variation diminishing (TVD) is a property of
certain discretization schemes used to solve hyperbolic partial differential
equations. It is mostly applied in computational fluid dynamics. This
concept was first introduced by Ami Harten.
In systems described partial differential equations, such as

∂u

∂t
+ a

∂u

∂x
= 0 (19)

TV =

∫
∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

dx (20)

A numerical method is said to be total variation diminishing (TVD) if,

TV (un+1) ≤ TV (un)
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Total Variation Diminishing

Total Variation Diminishing

In Computational Fluid Dynamics, TVD scheme is used to capture sharper
shock predictions without leaving any misleading oscillations when
variation of field variable is discontinuous. On the other hand, to capture
the variation, fine grids (∆x = very small) are needed and the
computations can become heavy and uneconomic. The use of coarse grids
with central difference scheme, upwind scheme, hybrid difference scheme,
and power law scheme gives false shock predictions. The TVD scheme
enables sharper shock predictions on coarse grids saving computation time
and as the scheme preserves monotonicity there are no spurious
oscillations in the solution.
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Total Variation Diminishing
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Total Variation Diminishing

Total Variation Diminishing
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Image Denoising

Image Denoising

Rudin, Osher and Fatemi (1990) developed finite difference schemes were
developed there which were used to enhance mildly blurred images
significantly while preserving the variation of the original image. They
concluded that the space of BV functions is the proper class for many basic
image processing tasks. Thus, the constrained minimization problem is

min

∫

Ω

√

u2x + u2ydxdy (21)

subject to the constraints involving u0. They took the two constraints as
above:
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Image Denoising

Image Denoising

This constraint signifies the fact that the white noise η(x , y) is of zero
mean and

∫

Ω

1

2
(u − u0)

2 = σ2

where σ > 0 is given. The second constraint uses a priori information that
the standard deviation of the noise η(x , y) is σ. Thus, there is a linear and
nonlinear constraint.
They arrive at the Euler-Lagrange equations

0 =
∂

∂x





ux
√

u2x + u2y



+
∂

∂y





uy
√

u2x + u2y



− λ1 − λ2(u − u0) (22)

in Ω, with ∂u
∂n

= 0 on the boundary of Ω = ∂Ω

Peter Ndajah (University of the Commonwealth Caribbean, Kingston, Jamaica)Total Variation Theory and Its Applications September 27, 2018 19 / 47



Image Denoising

Image Denoising

The solution uses a parabolic equation with time as an evolution
parameter, or equivalently, the gradient descent method. This means that
we solve

ut =
∂

∂x





ux
√

u2x + u2y



+
∂

∂y





uy
√

u2x + u2y



− λ(u − u0) (23)

for t > 0, x , y ∈ Ω, u(x , y , 0) given ∂u
∂n

= 0 on ∂Ω As t increases, we
approach a denoised version of the image. We must compute λ(t). If
steady state has been reached, the left hand side of equation (23)
vanishes. We then have

λ = −
1

2σ2

∫





√

u2x + u2y −





(u0)xux
√

u2x + u2y

+
(u0)yuy
√

u2x + u2y







 dxdy (24)
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Image Denoising

Image Denoising

This gives a dynamic value for λ(t), which appears to converge as t → ∞.
This is merely the gradient projection method of Rosen in his 1961 paper
titled ”The Gradient Projection Method for Nonlinear Programming part
II, nonlinear constraints”published by SIAM. The numerical method in two
dimensions is:
xi = ih, yj = jh i , j = 0, 1, ...,N with Nh = 1
tn = n∆t, n = 0, 1, ...
unij = u(xi , yi , tn),

u0ij = u(ih, jh) + σϕ(ih, ih)
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Image Denoising

Image Denoising

So the numerical approximation to equations (23) and (24) is

un+1
ij = unij+

∆t

h

[

∆x
−

(

∆x
+u

n
ij

(∆x
+u

n
ij)

2 + (m(∆x
+u

n
ij ,∆

y
−u

n
ij)

2)
1
2

)

+∆y
−

(

∆y
+u

n
ij

∆y
+u

n
ij + (m(∆x

+u
n
ij ,∆

x
−u

n
ij)

2)
1
2

)

−∆tλn(unij − u0(ih, ih)), (25)

for i , j = 1, ...,N with boundary conditions
un0j = un1j , u

n
Nj = unN−1,j , u

n
i0 = uniN = uni ,N−1

Here, ∆x
∓uij = ∓(ui∓1,j − uij
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Image Denoising

Image Denoising

and similarly for ∆y
∓uij .

λn is defined discretely as

λn = −
h

2σ2

[

∑

(√

(∆x
+u

n
ij)

2 + (∆y
+u

n
ij)

2

−
(∆x

+u
0
ij)(∆

x
+u

n
ij)

√

(∆x
+u

n
ij)

2 + (∆y
+u

n
ij)

2

−
(∆y

+u
0
ij)(∆

y
+ku

n
ij )

√

(∆x
+u

n
ij)

2 + (∆y
+u

n
ij)

2
(26)

A step size restriction is imposed for stability: ∆t
h2

≤ c
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Image Denoising

Image Denoising
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Image Denoising

Image Denoising

Reference Image: MSE = 255, SSIM = 1
(a)

Denoised Image: λ = 60,τ = 0.01, 

MSE = 255, SSIM = 0.653430
(b)

Denoised Image: λ = 12, τ = 0.01,

MSE = 255, SSIM = 0.892388
(c)

Denoised Image: λ = 2, τ = 0.01,

 MSE = 255, SSIM = 0.748494
(d)

Denoised Image: λ = 1, τ = 0.01,

 MSE = 255, SSIM = 0.712412
(e)

Denoised Image: λ = 0.5, τ = 0.01,

MSE = 255, SSIM = 0.685501
(f)
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Edge Detection

Image Edge Detection

We show edge detection using total variation and compare the result with
the Marr-Hildreth method. The scaling factor σ enables us to tune the
edge detection process.

G (x , y) = e
− x2+y2

2σ2 (27)

to smooth the image u(x , y). This is accomplished by a convolution of
both functions i.e. G (x , y) ⋆ u(x , y). σ is the standard deviation of
G (x , y) and it acts as a scaling factor, blurring out noise and structures
with scales below σ. Therefore, we get no absolute definition of edges. We
only talk about edges at a certain scale.
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Edge Detection

Image Edge Detection

The convolution
D(x , y) = G (x , y) ⋆ u(x , y) (28)

yields a smoothed image at a scale σ to which the Laplacian operator is
applied i.e. ∇2 (G (x , y) ⋆ u(x , y)). This operation is commutative and
gives the same result as

(

∇2G (x , y)
)

⋆ u(x , y) = ∇2D(x , y) (29)

The expression ∇2G is called the Laplacian of a Gaussian (LoG) and is
expressed as

∇2G (x , y) =

[

x2 + y2 − 2σ2

σ4

]

e
− x2+y2

2σ2 (30)
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Edge Detection

Image Edge Detection

Likewise, for the total variation approach, we first smooth the image by
convolving u(x , y) and the Gaussian function G (x , y) just as in the case of
the Laplacian approach. We then apply the total variation operator to the

convolved image D(x , y) i.e. ∇2D(x ,y)
|∇D| . This operation is not commutative

as in the case of the LoG. Below we show results of edge detection based
on the LoG images and total variation filtered images. Edge detection for
both kinds of images do not follow exactly the same procedure. The
traditional method of detecting edges in LoG images is by zero crossings.
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Edge Detection

Image Filters
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Edge Detection

Image Filters

Figure: Laplacian Filtered Image Showing Edges
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TV Image Filter

TV Image Filter

We obtained a minimization of the total variation functional by means of
the Euler-Lagrange minimization method. We use the resulting nonlinear
steady state partial differential equation given by

Jminu =
∇2u

|∇u|
(31)

with the Dirichlet boundary condition ∂u
∂n

= 0 to filter images in place of
the Laplacian. The changes in the image texture are well captured in the
filtered image. Also, the Laplacian forms double edges during image
filteration process. The total variation filter overcomes this disadvantage
by producing only single a edge.
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TV Image Filter

TV-Filtered Image

TV filter
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Gaussian Smoothed Image with σ = 2
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Marr-Hildreth Edge Detection with σ = 2
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Total Variation Edge Detection with σ = 2
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Gaussian Smoothed Image with σ = 3
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Marr-Hildreth Edge Detection with σ = 3
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Total Variation Edge Detection at σ = 3
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Gaussian Smoothed Image with σ = 4
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Marr-Hildreth Edge Detection with σ = 4
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Total Variation Edge Detection at σ = 4
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Gaussian Smoothed Image with σ = 5
Peter Ndajah (University of the Commonwealth Caribbean, Kingston, Jamaica)Total Variation Theory and Its Applications September 27, 2018 42 / 47



Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Marr-Hildreth Edge Detection with σ = 5
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Comparing Marr-Hildreth and Total Variation

Comparing Marr-Hildreth and Total Variation

Figure: Total Variation Edge Detection at σ = 5
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Object Recognition

Object Recognition

Edge detection algorithms are at the heart of object detection and
recognition in computer vision systems. Processes such as image
segmentation and pattern recognition depend on image edge detection.
These primary techniques combined with deep learning is what seems to
give machines the ability to recognize objects and act accordingly in
different situations. An example is self-navigating unmanned ground
vehicles sometimes called driverless cars. For the car to successfully travel
on a road, it must be able to recognize lane marks. The algorithm central
to this ability is image edge detection algorithm. Earlier methods used for
this purpose include the Canny and Marr-Hildreth algorithms. As we have
seen in previous sections, these algorithms will fail after scale 4 (i.e.
σ = 4). This means that if the road marks are not bright enough, the
vehicle will not be able to recognize them.
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Object Recognition

Lane Recognition

Figure: Driverless Car
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Book

Total Variation Book
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